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ABSTRACT

Fine-grained data parallelism, from media extensions to full
streaming or vector instruction sets, offer enormous perfor-
mance potential, if they can be effectively used from the
application level. One critical aspect of their design is the
organization of the registers and the generality of operations
that move data between registers. In this paper we focus on
this data-movement problem and demonstrate that starting
with a high-level description of a data-parallel application,
we can automatically map certain data-movements in the
program onto a regular set of vector permutation instruc-
tions.

Our approach to the problem is novel and significantly dif-
ferent from existing approaches in commercial vectorizing
compilers that generate vector reduction instructions like
sum reductions. Our language and compiler are based on
Streamlt from MIT, and our target machine is the VIRAM
processor from Berkeley. We devise new intermediate rep-
resentations and operators for analysing data-movements,
and demonstrate our technique on two benchmarks. We
show that data-movement operations give an enormous per-
formance boost for the benchmarks, and the performance of
our technique is close to, and sometimes better than, hand-
coded assembly.
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1. INTRODUCTION

As the computer industry heads towards an era with bil-
lion transistor chips, the desire to turn chip real estate into
high performance will increasingly rely on chip-level paral-
lelism. Yet evidence shows that there are diminishing ben-
efits from increasing the amount of dynamically discovered
instruction-level parallelism, so hardware designers are turn-
ing to explicitly parallel instruction sets, with the empha-
sis on data-parallelism. Commercial processors now include
small-scale data parallelism in their SIMD media extensions,
such as Intel’s SSE [6] and PA-RISC’s MAX-2 [11]. Re-
search prototypes such as VIRAM [9], Raw [21], and Imag-
ine [7] all take advantage of larger degrees of parallelism,
both to increase arithmetic performance and to mask the
effects of memory latency. In spite of the latency-hiding
features, and in the case of VIRAM the tight integration
with DRAM memory, temporal locality is still critical. The
three research processors take different approaches to the
data-movement problem, with Raw at one extreme provid-
ing arbitrary movement between “tiles,” providing a kind
of on-chip message passing machine model, and VIRAM at
the other providing only a limited set of regular permutation
patterns between vector registers in the register set.

In this paper, we explore the use of Streamlt language
and compiler [5], which generates code for the Raw machine,
and extend it to generate data-movement code in VIRAM, a
quite different task than in Raw. We augment the StreamIt
compiler with new intermediate representations and opera-
tors to collect and analyse data-movements between data-
parallel ‘parts’ of an application. The revised compiler that
does data-movement analysis is called StreamIt-to-VIRAM.
The data-movement instructions in VIRAM provide only
limited set of permutations to ease the hardware implemen-
tation [10]. But, we show that it gives some codes an enor-
mous performance boost as it avoids using memory to re-
arrange data, and we show that automatic code generation
is feasible using the StreamlIt model. Previous work has
used these instructions only from hand-coded assembly lan-
guage [23, 4], and for the single special case of automatically
generated code for reduction operations [9]. We note that
existing techniques in vectorizing compilers for generating
reductions can’t be easily extended to solve our problem, as
the exisiting techniques proceed by identifying linear recur-
rences on associative operations like sum and minimum in
a single loop, but the permutation instructions that we are
interested in involve non-linear recurrences usually spread
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Figure 1: A comparator network CN for 8-element
sequences. Each arrow represents a comparator, and
the inset shows the function of a single comparator.
Readers familiar with bitonic sequences would rec-
ognize this network as a bitonic merger that sorts
an input bitonic sequence of length 8 [24].

across many loops.
We sum up the main contributions of this work below.

e We propose a new approach for automatically gen-
erating certain vector permutations in VIRAM, and
demonstrate the approach using our StreamIt-to-VIRAM
compiler.

e Using two benchmark problems, sorting and Fast Fourier
Transforms, we show that the performance of our StreamIt-
to-VIRAM compiler is competitive with the best hand-
coding on VIRAM.

e We provide a modular approach to solve the problem.
Specifically, we decompose the complex task of gen-
erating permutation instructions into several simpler
tasks or modules that perform some direct transfor-
mations, and the internal representations of our com-
piler serve as clean interfaces between these modules.
Our modular approach has implications for compiler
writers on commercial and research architectures, as
the permutation instructures are quite similar to some
SIMD media extensions such as Intel’s SSE [6] and
PA-RISC’s MAX-2 [11].

o We show that automatic code generation of data-movement
code is feasible using the StreamIt model. The ap-
proach of describing applications in StreamlIt as a high-
level structure, called the stream-graph, greatly sim-
plifies data-movement analysis when compared to a
compiler for a language like C or Fortran.

We first introduce a motivating example (Section 2), and
use it as a running example to explain the StreamIt-to-
VIRAM compiler (Sections 3, 4, 5). We then present the
results of this work (Section 6), related work (Section 7),
and some future directions for this work (Section 8).

2. MOTIVATING EXAMPLE AND BACK-
GROUND

This section introduces a simple example application, and
uses it to provide a brief background on VIRAM and StreamIt.
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Figure 2: Permutations caused by vhalfup (a) and
vhalfdn (b) instructions, illustrated with 8 elements
per vector register. The figure is from [8]. Except
for the direction of elements’ motion, a vhalfup and
vhalfdn instruction with the same programmable
parameter (set in vindez) are similar. The instruc-
tions don’t modify the shaded elements of the desti-
nation registers. The vector length must be a power
of two for both the instructions.

The application is a comparator network C N shown in Fig-
ure 1 [25]. Each stage of CN exhibits data-parallelism, and
hence can be vectorized. Vectorizing one stage involves exe-
cuting operations like “vector min” and “vector max” on the
stage’s two input vector registers to obtain the stage’s two
output vector registers. The stage’s first input vector regis-
ter holds the input element at the tail of the 4 comparators
of the stage, while the stage’s second input register holds the
input element at the head of the comparators (some regis-
ters are marked in Figure 1; in this paper, a register simply
means a vector register). The stage’s two output registers
similarly hold the output elements at the tail and head of
the 4 comparators. The data rearrangement needed between
one stage’s output vector registers and the next stage’s input
vector registers are the subject of this work.

2.1 VIRAM

We describe vhalfup and vhalfdn instructions (let vhalfdd
refer to either vhalfup or vhalfdn hereafter), to show that
vhalfdd permutations on one stage’s output registers can be
used to setup the next stage’s input register. Since vhalfdd
permutations are more regular than arbitrary permutations,
they require less chip area and execute fast [10]. We don’t
look at VIRAM'’s other data-movement instructions, as they
are either general and hence execute slow (eg. vector com-
press and expand) [8], or are exploited by the existing com-
piler (eg. reduction operation). As shown in Figure 2, the
vhalfdd instructions divides the source register into blocks
of size 2- 2vndes ghifts half of the elements within each block
by 2""*® elements, and writes them into the corresponding
position in the destination register.

2.2 Streamlt

We describe a subset of Streamlt here, and continue the
running example from Figure 1. An application is expressed
in Streamlt as a network of computational entities called fil-
ters. Filters communicate with neighboring filters via FIFO
queues using the operations of push(value) and pop(). The



work function that does the computation is invoked at ev-
ery fine-grained execution of the filter, and the number of
items pushed (popped) during each invocation, is the push
value (pop value). Figure 3 shows the code of our running
example, and Figure 4 the corresponding stream-graph.

The high-level structures in this stream-graph are pipelines,
which sequentially compose streams (filters or other con-
structs), and splitjoins, which compose independent streams
that diverge from a common splitter and merge into a com-
mon joiner. The splitter and joiner of a splitjoin are key
places in the stream-graph where data-movement happens.
Streamlt is a static language, i.e., the stream-graph struc-
ture (including the push and pop values, and roundrobin
weights associated with roundrobin splitters and joiners)
must be known at compile-time. A steady-state schedule is
an ordering of the executions of filters, splitters, and joiners
of the stream-graph that satisfies certain data-dependence
semantics. A hierarchical steady-state schedule [5] is used as
the underlying schedule for data-movement analysis in this
work. The number of executions in the underlying schedule
of a filter, splitter or joiner, is referred to as multiplicity in
this paper.

3. DATA-MOVEMENT ANALYSIS

Data-movement analysis is the process of obtaining and
analysing data-movements. First, we need a framework (a
basis) for doing it, and this section presents such a frame-
work (Section 3.2) inspired by a subset of features of StreamlIt
(Section 3.1). Our StreamlIt-to-VIRAM compiler augments
StreamIt with new representations and operators that help
in data-movement analysis (they are described in this sec-
tion and the next two).

3.1 Data-movement-specific features of StreamIt

The features of StreamIt used in our StreamIt-to-VIRAM
compiler for data-movement analysis are listed below. These
features could prove useful to extend data-movement anal-
ysis to other source languages like C.

1. Static nature: Streamlt’s various static requirements
let the stream-graph structure and steady-state schedule [5]
to be determinable at compile-time. The concrete founda-
tion provided by the stream-graph structure and (underly-
ing) schedule greatly simplifies data-movement analysis.

2. Data-parallelism construct: A data-parallelism con-
struct like splitjoin is important, since we are interested
mainly in data-movements between data-parallel components
of the application. A wvectorizable set captures the notion of
a data-parallel component, and is defined as a set of filters of
same identity (hence same work function, push and pop val-
ues, etc.,) and same multiplicity that additionally satisfy the
condition: these filters are the only independent filters in a
splitjoin (called the enclosing splitjoin). The stream-graph
in Figure 4 has three vectorizable sets that comprise the
filters in Stagel, Stage2 and Stage3 splitjoins respectively
(the enclosing splitjoin can also contain other splitjoins; eg.
Stage?2 splitjoin)

3. Data-centric abstractions: The push and pop FIFO
queues and splitter and joiner abstractions in Streamlt are

very much data-centric. Let’s see their effect on data-movement

analysis. We assume in this paper that the multiplicity of
the filters of a vectorizable set is 1 (without loss of gener-
ality [17]). Then, each of these filters produces push values
and consumes pop values in the underlying schedule. Hence,

the vectorizable set as a whole has push def vectors and pop
use vectors, with each def or use vector’s length being the
number of filters in the vectorizable set. Figure 5 illustrates
different vectors, and also shows how def and use vectors
correspond to output and input vector registers respectively
of a vectorizable set. Thus, data-movement analysis now
reduces to the problem of determining how to get a use vec-
tor from the def vector(s) that contributes data to the use
vector.

4. Decomposable data-movements: A “global” data-
movement captures how data gets routed between def vec-
tors that contribute data to a use vector and the use vector
itself (for example, the def vectors “b” and “¢” contribute to
the use vector VR3in Figure 5). A global data-movement is
decomposable into a set of simple local data-movements at
splitters or joiners that lie in the path in the stream-graph
from the contributing def vectors to the use vector.

3.2 Streamlt-to-VIRAM’s Data-movement frame-

work

This section presents a new representation called views
as part of a framework for doing data-movement analysis.
Vectorizable sets, their use and def vectors, edge vectors (Fig-
ure 5), and views all constitute a natural framework or ba-
sis for doing data-movement analysis. If the user exposes
communication patterns in the application over a suitably
fine-grained stream-graph, then the data-movements in the
stream-graph are readily available for analysis under this
framework. We require the programmer to use only a subset
of StreamlIt [17] similar to the one described in Section 2.2.
We believe that this subset has a good chance of covering
parts of the application that can benefit from vhalfdd permu-
tations. For example, the subset doesn’t contain duplicate
splitters, and vhalfdd permutations don’t involve duplica-
tions.

A view of a edge or use vector (called as edge or use view)
describes the composition of the vector by recording the
”origin” (specific def vector) and ”position or index in ori-
gin” of each element of the vector separately. An example of

a edge view in Figure 5 is the ordered set {b[0], b[1], b[2], b[3], c[0], c[1], ¢[2], |

of the contents inside one edge vector. We exploit the con-
tiguous regularity in this view to obtain a compact represen-
tation {(<b> + 0, +1, 4), (<c> + 0, +1, 4)}. Each structure
of the form (<z> + offset, stride, length) in the view (we
call it a subview), indicates a strided access on the vector z,
and picks the (offset+0- stride)-th, (offset+1- stride)-th, .. .,
(offset + (length—1) - stride)-th elements of z. Subviews can
also be “struct-strided” accesses [17]. Use views provide suf-
ficient information for generating permutation instructions,
and edge views provide enough information for obtaining
the use views. Hence, views serve as an important interme-
diate representation and key component of data-movement
framework.

4. OBTAINING VIEWS

This section describes our extensions to the StreamlIt com-
piler for obtaining the use views of all use vectors in the
stream-graph, and forms the first phase of data-movement
analysis. The task of obtaining use views is broken down into
local tasks of obtaining edge views (”decomposable data-
movements” feature in Section 3.1). The basic principle be-
hind this decomposition strategy is the simulation of filter
invocations and data-movements in the stream-graph, ac-



void->void pipeline Main { int—>int filter Comparator {

add DataSource(8); wor k push 2 pop 2 {

add ComparatorStage(4, 1); //Stagel int eleml = pop();

add MiddleStage; //Stage2 int elem2 = popQ);

add ComparatorStage(4, 2); //Stage3 int mink = min(eleml, elem2);

add DataSink(8); int maxk = max(eleml, elem2);
} push(mink);

push(maxk) ;
}
}

int—>int splitjoin ComparatorStage(int N, int W) {
split roundrobin(W); //splitter

for (int 1=0; i<N; i++) { int—>int splitjoin MiddleStage {
add Comparator; split roundrobin(4); //splitter
5 ) o add ComparatorStage(2, 1); //Stage2a
Join roundrobin(W); //joiner add ComparatorStage(2, 1); //Stage2b
join roundrobin(4); //joiner
}

Figure 3: StreamlIt code for the comparator network CN from Figure 1. The DataSource(n) filter (code not
shown) only pushes the n input elements from a ”source_array”, and the DataSink(n) filter (code not shown)
only pops the n output elements into a ”sink_array”. A roundrobin(W) splitter, in one round, sends the first W
items to the first stream in the splitjoin, the next W items to the second stream, and so on. A roundrobin(W)
joiner has a similar function.

Stage3
Splitjoin

DataSnk
filter

(sink_array)

- = —_———
Comparator Compar ator
filters v filters
Comparator
filters

Figure 4: A stream-graph G¢ny modelling the comparator network CN from Figure 1. The edges in the figure
represent FIFO queues. The numbers inside a splitter or joiner are the roundrobin weights, and those near
the output and input of each filter are the push and pop values respectively (this convention is followed in all
figures). The small number near the bottom of each Comparator filter (a filter of identity ‘Comparator’) is the
filter’s ’position’ in either of splitjoins, Stagel, Stage2 or Stages.
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Figure 5: A section of the stream-graph of Figure 4 annotated with the underlying schedule’s execution. The
edge vectors represent the corresponding FIFO queues (the first element of the edge vector is the head of
the FIFO queue, and so on). A def vector collects appropriate elements from edge vectors at the output of
a vectorizable set, so it corresponds to an output vector register of the vectorizable set (this observation,
which is similarly true for use vectors, follows from visualizing a data-parallel execution of the vectorizable

set; see also Section 2).

cording to the underlying schedule. The simulation needs
only the static values of the stream-graph, and the work

functions of filters are abstracted out of the simulation. Though

the simulation here is analogous to the one done by the
StreamIt-to-Raw compiler [5], its purpose and implementa-
tion are quite different. The simulation here is for recog-
nizing communication patterns mappable to VIRAM’s per-
mutation instructions, but the one in Streamlt-to-Raw is
for communication scheduling. The simulation in this work
records the regularity structure in communication patterns
using views and its associated operator apply_stride.

The apply_stride operator plays a key role in obtaining
edge and use views. It applies a strided access on an input
view to return an output view. In more detail, it outputs
a view of a vector that is obtained by applying a strided
access (specified by offset, stride and length) on the input
vector (the use or edge vector described by the input view).
For example, an apply stride of (offset, stride, length) on
an input view {(<a> + offset’, stride’, length’)} returns the
output view, {(<a> + offset- stride’ + offset’, stride- stride’,
length)}. For an elaborate description of apply_stride, see
[17].

The edge views are obtained by traversing the edges of the
stream-graph in a topological order (i.e., an edge is visited
only after visiting all neighbouring edges coming into that
edge). The current edge being visited could lie at the output
of a splitter, joiner or filter, so the view of edge vector at the
current edge is obtained by merely simulating the working
of a splitter, joiner or filter, according to the underlying
schedule. These simulations can be done efficiently using
the apply_stride operator [17].

Once we have the edge views at a vectorizable set’s input,
we can readily obtain its use views. Specifically, the pth use
view of the vectorizable set is an apply_stride of (p, +pop,
vlength) on a view that is the concatenation of edge views
at the vectorizable set’s input (here pop is the pop value
of a filter of this set, and vlength is the number of filters in
this set). Figure 6 illustrates the whole exercise of obtaining

edge and use views, and is easily understood by comparing
it with Figure 5.

5. ANALYSING VIEWS

Analysing views forms the second phase of data-movement
analysis. Equipped with the use views of all use vectors re-
turned by the first phase, we generate permutation instruc-
tions by looking for access patterns (or structure) in these
views that are mappable to vhalfdd permutations. Instead
of working directly with views, we work with an alternate
characterization of a use vector’s composition, called the us-
age and location patterns that are derived from use views.
These patterns simplify the generation of vhalfdd (especially
multiple vhalfdd) permutations, so we look at them first.

Consider a specific use vector UV. The usage and location
pattern is defined for each def vector that contributes data
to UV. Let contributed elements of a def vector refer to its
data elements that end up in UV. Then, the position or
index of each contributed element of a def vector in the def
vector itself is the usage pattern of the def vector, and that
in the use vector is the location pattern of the def vector.
For example, if UV’s composition is {a[0], b[0], a[1], b[1]},
both a and b contribute their first two elements to UV and
hence have the same usage pattern, which is the ordered set
{0,1}. However, a and b’s location pattern is the ordered
set {0,2} and {1,3} respectively. To clarify, if the dth ele-
ment of the def vector ends up in uth position of UV, then
d and u are present (say, as the ith value) in the ordered
set representing a def vector’s usage and location pattern
respectively. Having defined usage and location patterns
using ordered sets, the next step is to compact these sets
using a ”block-stride” representation. A block-stride rep-
resents a usage or location pattern using four parameters
(offset, stride, length, blocking-factor), as follows. Consider
a vector of all possible positions or indices {0,1,2,...}, and
group every blocking-factor adjacent elements of this vector
into blocks. The result is a new vector V' of blocks, and a
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Figure 6: Obtaining edge and use views on a section of the stream-graph of Figure 4. Compare the views in

this figure with the vectors in Figure 5.

strided access of (<V> + offset, stride, length) on V returns
some blocks. The ordered set of positions in the returned
blocks gives the pattern represented by this block-stride.
For example, if an usage or location pattern is the ordered
set {0,1,2,6,7,8,12,13,14}, then the pattern is represented by
the block-stride (0, 42, 3, blockf 3) (blockfindicates blocking-
factor). In this example, the vector V of blocks is {(0,1,2),
(3,4,5), (6,7,8), (9,10,11), (12,13,14)}, and the underlined
blocks are spaced at a stride of +2.

‘We now have the machinery to deduce or generate vhalfdd
permutations from usage and location patterns that are rep-
resented as block-strides. A simple claim that lets us gen-
erate a single vhalfdd permutation follows. If (A) exactly
two def vectors (allocated in registers VRS1 and VRS2) con-
tribute data to a use vector (allocated in VRD), (B) the us-
age pattern of both the def vectors w.r.t the use vector are
(offset, +2, length, blockf 2"%) with offset being 0 or 1 and
length being a power of two, and (C) the location pattern of
the first and second def vector w.r.t the use vector are (0, +2,
length, blockf 2"%%) and (1, +2, length, blockf 2%) respec-
tively, then we can generate vhalfup(VRD, VRS1, VRS2,
vidx) if offset is 0 or vhalfdn(VRD, VRS2, VRSI, vidx) if
offset is 1, to setup data in the use vector. In the claim,
vhalfdd(vrdest, vrsrcl, vrsrc2, vindez) is a shorthand for the
two-instruction sequence: copy vrdest, vrsrcl and vhalfdd
vrdest, vrsrc2. The claim is easy to verify, and applying it
to Figure 6 shows that VR3 can be setup with proper data
by a vhalfup(VR3, VR1, VR2, 1), and VR4 can be setup by
a vhalfdn(VR4, VR2, VRI, 1).

Multiple vhalfdd permutations combine the effect of a list
(i.e., sequence) of single vhalfdd permutations to achieve a
complex permutation of data. Here is an example (VRS1
and VRS2 are source, VRD is destination, and VRT are
temporary registers):

Pair 1: vhalfup(VRTI1, VRS1, VRS2, 2), vhalfdn(VRT2, VRS2,

VRS1, 2)

Pair 2: vhalfup(VRT3, VRT1, VRT?2, 1), vhalfdn(VRT4, VRT?,
VRT1, 1)

Last: vhalfup(VRD, VRT3, VRT4, 0)

A list of arbitrary single vhalfdd permutations is difficult
to deduce, so we only consider a ”constrained list” [17] of
vhalfdd permutations (motivated by the Bitonic Sort ap-
plication). A constrained list has three parameters, orien-
tation, vidxpey and vidxen,q. The above example is a con-
strained list with orientation 0, vidxpeg 2, and vidXepq 1
(orientation would be 1 if the ”Last:” instruction in the ex-
ample were a vhalfdn(VRD, VRT4, VRT3, 0) instead). A
claim that lets us generate a constrained list, and is sim-
ilar to the claim seen above, follows. If (A) exactly two
def vectors contribute data to a use vector, (B) the us-
age pattern of both the def vectors are (offset, +2, length,
blockf 2"%*end) with offset being equal to orientation (and
hence only 0 or 1) and length being a power of two, and
(C) the location pattern of the first and second def vector
are (0, +2, length’, blockf 2"%t<s) and (1, 42, length’, blockf
2Vidxbeg ) respectively, then we can generate a constrained
list of vhalfdd permutations with parameters, orientation,
vidxpeg and vidxenq to setup data in the use vector. In
the claim, length - 2"%end = Jength’- 2""®tes. By the claim,
we can generate the example constrained list above if, VRS1
and VRS2 have the same usage pattern (0, +2, length, blockf
1), and location patterns (0, +2, length’, blockf 4) and (1,
+2, length’, blockf 4) respectively, w.r.t VRD. The claim can
be inductively proved by stepping through the constrained
list’s permutations and noticing their effect on the patterns.

6. RESULTS

6.1 Setup

The StreamIt-to-VIRAM compiler described in this work
is implemented by integrating the StreamlIt compiler, which
we modified to do data-movement analysis, and the exist-
ing VIRAM vectorizing C compiler vce. The implementa-
tion is a proof-of-concept, and the compilation process is
fully automated except for two minor phases. Note that
no assembly-level hand optimizations is done in these two
phases [17], and there is no fundamental obstacle against
automating these phases in future. The benchmark applica-



tions FFT [23, 26], and Bitonic Sort [24, 25] were considered
to test our compiler. The benchmarks were chosen so that
they contain data rearrangements implementable using both
memory accesses and permutation instructions, and hence
exhibit a tradeoff in the number of register-register opera-
tions per memory access.

6.2 Performance on VIRAM

VIRAM-1, a prototype VIRAM processor targeted to run
at 200 MHz [9], was recently fabricated. It is not yet running
in a test environment, and we obtain these results using a
near cycle-accurate simulator. The performance of FFT on
VIRAM is shown in Table 1, and two observations are imme-
diate: Vhalfdd permutations are important in accelerating
FFT (this agrees with the result in [23] on the superiority
of vhalfdd permutations over other assembly optimizations
for FFT), and our compiler beats even the hand-optimized
code of [22]. Our StreamlIt-to-VIRAM compiler performs
better than the hand-optimized code, because the former
uses faster unit-stride vector loads [4] instead of indexed
vector loads during the final few FFT stages. But, in or-
der to use unit-stride loads, the FFT code produced by our
compiler uses roughly 6 times more memory space than the
hand-optimized code.

The results of Bitonic Sort are in Table 2. Hand-coding
bitonic sort to exploit vhalfdd permutations is very tedious
as a simple data-movement in the application can translate
to multiple vhalfdd permutations in the assembly code (Sec-
tion 5), and our StreamIt-to-VIRAM compiler provides a far
better alternative. Some basic backend optimizations are
absent in vce [10], but a positive note in [10] says that these
optimizations are “straightforward to add in future and have
been available for years in all commercial compilers”. Recall
that the StreamIt-to-VIRAM compiler also uses vce, and we
tackle the absence of the basic backend optimizations via a
“cleanup” (see Table 2) done by hand, to mainly remove spill
and unwanted code from the final assembly file produced by
the StreamIt-to-VIRAM compiler.

7. DISCUSSION AND RELATED WORK

Compilation of communication in an application involves
the process of generating and scheduling communication op-
erations. The thrust of this work is in generating commu-
nication operations, as each high-level communication op-
eration (permutation instruction) translates to a hardcoded
schedule of basic data transfers on VIRAM’s on-chip com-
munication network. To this end, this work is different from
studies whose thrust is in communication scheduling. Exam-
ples of such efforts include those in a traditional multipro-
cessort setting [2, 20] or on-chip communication setting [13,
15], and their thrust is in scheduling because the commu-
nication operations involved are usually low-level primitives
like send and receive. The same argument applies to previ-
ous work like [19] that map synchronous dataflow languages
[1] to multiprocessor DSP architectures (See [5] for a dis-
cussion on how Streamlt is closely related to the class of
synchronous dataflow languages).

We now put our work in context of other works whose
thrust was on communication generation. Commercial vec-
torizing compilers generate vector reductions by identifying
linear recurrences in a single loop [8]. But these techniques
can’t be easily extended to generate vhalfdd permutations,
because non-linear recurrences as in FFT are usually spread

across many loops and can come in many algorithmic de-
scriptions [8]. Previous work used vhalfdd permutation in-
structions only from hand-coded assembly language [23, 4],
and our approach provides one solution to automatically
generate vhalfdd permutations. Another work [14] uses syn-
tactic pattern matching techniques to get communication
generation for massively parallel processors. However, they
focus on simple uniform or aggregate operations like shift,
rotate, transpose, etc., and don’t demonstrate their tech-
nique for operations like shuffle-exchanges [14] (which are
similar to vhalfdd permutations). Further, we note here
that our approach is more robust than syntactic pattern
matching approaches as we simulate the data-movements
through the application to obtain views. So, as long as the
program is expressed in a fine-grained fashion that exposes
the data-movements, communication generation is less sen-
sitive to the programmer’s actual style of coding the data-
movements.

There has been efforts on short vector code generation
[3] in the SPIRAL [18] framework. Given a matrix repre-
sentation of the application in SPL, the input language of
SPIRAL, the SPIRAL system generates formulas that cor-
respond to different factorizations of the matrix and chooses
the efficient formula for the target. The authors of [3] use
this formula to generate short vector code including permu-
tation code. But, the permutations are directly got from the
formulas that SPIRAL generates and so there is no need to
deduce permutation instructions from a programmer-written
code as in this work.

Finally we note that our work is orthogonal and comple-
mentary to efforts that propose new data-movement instruc-
tions [12]. These efforts focus on designing new permutation
primitives capable of realising any arbitrary permutation ef-
ficiently, and not really on deducing the permutations from
a high-level description. Our approach provides means for
testing the feasibility of automatic code-generation of the
new permutations, and thus impacting the inclusion of new
permutations in the instruction set.

8. CONCLUSIONS

This paper presented a modular approach for automatic
code-generation of vhalfdd permutations in VIRAM. We
showed that our approach performs competitively with hand-
coded assembly and vhalfdd permutations provide an enor-
mous performance boost for the benchmarks considered.
Our modular approach demonstrates StreamlIt’s usefulness
in data-movement analysis. Internal representations like
views help achieve modularity by serving as clean interfaces
between different phases of the compiler, which would be
useful in retargeting to other vector or SIMD instruction
sets.

A natural question at this juncture is: How extensible is
the approach taken in this work to generate other permu-
tation instructions? The answer is closely linked with the
data-movement specific features of StreamlIt (Section 3.1).
Our approach could be extended to generate a permutation
instruction, if the instruction’s data rearrangement can be
represented using the structure of the stream-graph (i.e., us-
ing the splitters and joiners that lie along the path from the
relevant def vectors to the use vector). Hence, instructions
with dynamic access patterns (eg. the powerful “vperm”
instruction from Motorola’s Altivec [16]) cannot be repre-
sented in this framework. But, interesting examples of in-



Method of Programming Exploits vhalfdd Performance
permutations? | (h/w peak: 1,600 MFlops)

C code and vce compiler No 94 MFlops

StreamIt-to-VIRAM compiler Yes 1,109 MFlops

Hand-optimized assembly Yes 898 MFlops

code based on [22]

Table 1: Performance comparison of different methods of coding FFT in VIRAM on N = 256 complez elements
(the real and imaginary parts are 32-bit floating point numbers).

Method of Programming Exploits vhalfdd Performance
permutations? | (h/w peak: 1,600 MOps)

C code and vee compiler No 19 MOps

StreamIt-to-VIRAM compiler Yes 180 MOps

StreamIt-to-VIRAM compiler + cleanup Yes 737 MOps

Hand-optimized assembly code used in Yes 738 MOps*

DIS histogram benchmark [4]

Table 2: Performance comparison of different methods of coding Bitonic Sort in VIRAM on N = 128 32-bit
integers. (* - This code sorts only 64 elements, and is part of the DIS histogram benchmark [4].)

structions that could be represented are the “high or low un-
pack and interleave” instructions from Intel’s SSE [6], and
“mixR or mixL” instructions from PA-RISC’s MAX-2 [11]
(surprisingly, mixR and mixL are analogous to vhalfup and
vhalfdn instructions respectively). All of these instructions
add explicit parallelism to the instruction set, and history
has shown that the ability to compile for such extensions is
critical. Our work demonstrates that VIRAM-style regular
permutation instructions are not only efficient from a hard-
ware perspective, but can also be reasonably supported by
compilers from a high-level parallel language like StreamIt.
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